Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis.

نویسندگان

  • S Trevisan
  • D Pizzeghello
  • B Ruperti
  • O Francioso
  • A Sassi
  • K Palme
  • S Quaggiotti
  • S Nardi
چکیده

Humic substances (HS) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. HS exert auxin-like activity, but data supporting this hypothesis are under debate. To investigate the auxin-like activity of HS, we studied their biological effect on lateral root initiation in Arabidopsis thaliana. To this aim we characterised HS by means of DRIFT and (13)C CP/MAS NMR spectroscopy, and measured their endogenous content of IAA. We then utilised a combination of genetic and molecular approaches to unravel HS auxin activity in the initiation of lateral roots. The data obtained using specific inhibitors of auxin transport or action showed that HS induce lateral root formation mostly through their 'auxin activity'. These findings were further supported by the fact that HS used in this study activated the auxin synthetic reporter DR5::GUS and enhanced transcription of the early auxin responsive gene IAA19.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling.

Despite numerous physiological studies addressing the interactions between brassinosteroids (BRs) and auxins, little is known about the underlying molecular mechanisms. We studied the expression of IAA5 and IAA19 in response to treatment with indole acetic acid (IAA) or brassinolide (BL), the most active BR. Exogenous IAA induced these genes quickly and transiently, whereas exogenous BL induced...

متن کامل

Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis.

Plant hormone brassinosteroids (BRs) and auxin exert some similar physiological effects likely through their functional interaction, but the mechanism for this interaction is unknown. In this study, we show that BRs are required for lateral root development in Arabidopsis and that BRs act synergistically with auxin to promte lateral root formation. BR perception is required for the transgenic e...

متن کامل

The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis.

Organ primordia develop from founder cells into organs due to coordinated patterns of cell division. How patterned cell division is regulated during organ formation, however, is not well understood. Here, we show that the PUCHI gene, which encodes a putative APETALA2/ethylene-responsive element binding protein transcription factor, is required for the coordinated pattern of cell divisions durin...

متن کامل

MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis.

Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roots. To test the role of auxin influx in nodulation we used the auxin influx inhibitors 1-naphthoxyacetic acid (1-NOA) and 2-NOA, which we found red...

متن کامل

Aux/lAA Proteins Repress Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response Elements

A highly active synthetic auxin response element (AuxRE), referred to as DR5, was created by petforming site-directed mutations in a natural composite AuxRE found in the soybean GH3 promoter. DR5 consisted of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element. The DR5 AuxRE showed greater auxin responsiveness than a natural composite AuxRE and the GH3 promoter when...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant biology

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2010